Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# John Fawcett,<sup>a</sup> Jonathan M Percy,<sup>a</sup> Stéphane Pintat,<sup>b</sup> Clive A Smith<sup>c</sup> and Emi Uneyama<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, University of Leicester, Leicester LE1 7RH, England, <sup>b</sup>GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow CM19 5AW, England, and <sup>c</sup>Chroma Therapeutics Ltd, 93 Milton Park, Abingdon, Oxon OX14 4RY, England

Correspondence e-mail: jmp29@leicester.ac.uk

#### **Key indicators**

Single-crystal X-ray study T = 150 K Mean  $\sigma$ (C–C) = 0.013 Å R factor = 0.082 wR factor = 0.230 Data-to-parameter ratio = 6.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ex

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

# (1*S*\*,2*S*\*,4*S*\*)-3,3-Difluoro-2,4-dihydroxy-5,5-dimethylcyclooct-5(*Z*)-en-1-yl *N*,*N*-diethylcarbamate

The structure of the title compound,  $C_{15}H_{25}F_2NO_4$ , is reported and reveals a pseudorotational relationship between the ring conformation of this compound and that of an isomeric byproduct reported in the following paper. Received 11 July 2005 Accepted 3 August 2005 Online 21 September 2005

# Comment

Conformational equilibria in eight-membered carbocycles occur via two main processes, pseudorotation and ring inversion. The latter exchanges substituent groups between equatorial and axial environments in a pseudo-enantiomeric relationship. Ring inversion is usually the more energetically demanding process; barriers to inversion exchange of 7.3-8.5 kcal mol<sup>-1</sup> have been reported, with smaller barriers (*ca* 5 kcal  $mol^{-1}$ ) (Servis & Noe, 1973) for the pseudorotation. [For early attempts to apply variable-temperature NMR to these phenomena, see Anderson et al. (1969) and St Jacques et al. (1966).] Recent work from our group has attempted to define these processes for a trio of difluorinated cyclooctenyl systems (Fawcett, Griffith et al., 2005). We were interested in observing a pseudorotational relationship between the ring conformations in the pair of reduction products (1) and (2), obtained upon treatment of a precursor ketone with sodium borohydride.



Product (1) (the major product) arises from the opposite sense of hydride attack, with the *N*,*N*-diethylcarbamoyl group retaining its original location (Fig. 1). Product (2), reported in the following paper (Fawcett, Percy *et al.*, 2005), arises from reagent attack on the ring face which bears the hydroxyl group, followed by migration of the *N*,*N*-diethylcarbamoyl group on to the newly formed hydroxyl group (Balnaves *et al.*, 1999). A comparison of the two molecules is shown in Fig. 2.  $O-H\cdots O$  hydrogen bonding links molecules of (1) into chains along the *b* axis (Table 1).

# **Experimental**

The precursor ketone was prepared as described in the literature (Fawcett, Griffith *et al.*, 2005). Sodium borohydride (1.8 mmol, 70 mg) was added in five portions to a cold (273 K) solution of the ketone (1.8 mmol, 0.59 g) in ethanol (10 ml). After completion of the addition, the reaction mixture was allowed to warm to room



#### Figure 1

The molecular structure of (1), showing the atom-numbering scheme and 50% displacement ellipsoids. H atoms have been omitted for clarity.



#### Figure 2

An overlay showing the relationship between the structures of compounds (1) and (2).

temperature, stirred for 2 h at this temperature and poured over a mixture of ice and water (25 ml). HCl (10 ml of a 1 N solution) was added cautiously and the mixture was extracted with diethyl ether (3  $\times$  25 ml). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated under reduced pressure to leave a white solid (0.51 g). Purification by column chromatography (40% ethyl acetate in light petroleum) afforded the desired diol (1) as a white solid (0.43 g, 72%).  $R_{\rm F}$  (40% ethyl acetate in light petroleum) 0.29; m.p. 388-389 K (found: C 56.17, H 7.71, N 4.29%; C<sub>15</sub>H<sub>25</sub>F<sub>2</sub>NO<sub>4</sub> requires: C 56.06, H 7.84, N, 4.36%);  $v_{max}$ (KBr)/cm<sup>-1</sup> 3460 (s br, O-H), 3356 (s br, O-H), 2977 (m, =С-H), 2877 (m, С-H), 1671 (s, C=O); <sup>1</sup>H NMR (250 MHz, CDCl<sub>3</sub>): δ 5.83 (1H, dd, J = 18.5, 9.0 Hz, H-5), 5.53 (1H, t, J = 9.0, 9.0 Hz, H-4), 4.84 (1H, ddd,  ${}^{3}J_{HF}$  = 21.3, 8.0, 4.1 Hz, H-3), 4.48 (1H, d, J = 5.7 Hz, H-8), 4.18-4.04 (1H, m, H-1), 3.42–3.10 [5H, m, -OH and  $-N(CH_2CH_3)_2$ ], 2.45 (1H, dd,  $J_{gem} =$ 13.8, J = 8.5 Hz, H-6a), 2.17 (1H, br s, -OH), 1.77 (1H, dd,  $J_{gem} =$ 13.8 Hz, J = 8.3 Hz, H-6b), 1.18–0.93 [12H, m,  $-N(CH_2CH_3)_2$  and  $2 \times$  $-CH_3$ ]; <sup>13</sup>C NMR (63 MHz, CDCl<sub>3</sub>):  $\delta$  157.4, 131.4, 131.3 (*d*, <sup>3</sup>*J*<sub>CF</sub> = 6.6 Hz), 122.8 (dd,  ${}^{1}J_{CF}$  = 253.1, 246.9 Hz), 87.4 (d,  ${}^{3}J_{CF}$  = 9.2 Hz), 70.8  $(dd, {}^{2}J_{CF} = 23.9, 19.8 \text{ Hz}), 68.4 (dd, {}^{2}J_{CF} = 23.9, 20.9 \text{ Hz}), 42.8, 42.0,$ 39.8, 34.9, 30.4, 24.3, 14.5, 13.4; <sup>19</sup>F NMR (235 MHz, CDCl<sub>3</sub>): δ –118.5  $(1F, dddd, J_{gem} = 241.5, {}^{3}J_{HF} = 21.2, 10.6, {}^{4}J_{FH} = 6.6 \text{ Hz}), -122.1 (1F, 10.6)$ dd,  $J_{gem} = 241.5$ ,  ${}^{3}J_{FH} = 16.6 \text{ Hz}$ ; [HRMS (FAB,  $[M+H]^{+}$ ) Found: 322.18293, calculated for C<sub>15</sub>H<sub>26</sub>F<sub>2</sub>NO<sub>4</sub>: 322.18299]; *m/z* (FAB): 322  $(100\%, [M+H]^+)$ . An analytical sample was recrystallized by vapour diffusion (ethyl acetate/light petroleum) to afford colourless needles.

### Crystal data

| $C_{15}H_{25}F_2NO_4$          | $D_x = 1.342 \text{ Mg m}^{-3}$           |
|--------------------------------|-------------------------------------------|
| $M_r = 321.36$                 | Mo $K\alpha$ radiation                    |
| Monoclinic, Pn                 | Cell parameters from 2104                 |
| a = 7.9651 (14)  Å             | reflections                               |
| $p = 6.4632 (12) \text{\AA}$   | $\theta = 2.6-24.7^{\circ}$               |
| e = 15.445 (3) Å               | $\mu = 0.11 \text{ mm}^{-1}$              |
| $\beta = 90.136 \ (3)^{\circ}$ | T = 150 (2) K                             |
| $V = 795.1 (2) \text{ Å}^3$    | Block cut from needle, colourless         |
| Z = 2                          | $0.24 \times 0.18 \times 0.12 \text{ mm}$ |
|                                |                                           |

## Data collection

| Bruker APEX CCD area-detector | 1332 reflections with $I > 2\sigma(I)$ |
|-------------------------------|----------------------------------------|
| diffractometer                | $R_{\rm int} = 0.041$                  |
| $\varphi$ and $\omega$ scans  | $\theta_{\rm max} = 25.0^{\circ}$      |
| Absorption correction: none   | $h = -9 \rightarrow 9$                 |
| 5283 measured reflections     | $k = -7 \rightarrow 7$                 |
| 1403 independent reflections  | $l = -18 \rightarrow 18$               |
| Refinement                    |                                        |

| $w = 1/[\sigma^2(F_o^2) + (0.1065P)^2]$                    |
|------------------------------------------------------------|
| + 3.2641 <i>P</i> ]                                        |
| where $P = (F_0^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} = 0.003$                        |
| $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$ |
|                                                            |
|                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $\overline{D-\mathrm{H}\cdots A}$ | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------|------|--------------|--------------|---------------------------|
| $O1-H1\cdots O2^i$                | 0.84 | 2.18         | 2.816 (10)   | 133                       |

Symmetry code: (i) x, y + 1, z.

H atoms were positioned geometrically, with C-H = 0.95-1.00 Å and O-H = 0.84 Å, and treated as riding, with  $U_{iso}(H) = 1.2$  or 1.5 (methyl and OH) times  $U_{eq}$  of the parent atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Universities of Birmingham and Leicester, the EPSRC (project grant GR/K84882 for SP), GlaxoSmithKline (CASE studentship for SP) and Universities UK (ORS Award for EU).

# References

Anderson, J. E., Glazer, E. S., Griffith, D. L., Knorr, R. & Roberts, J. D. (1969). J. Am. Chem. Soc. 91, 1386–1395.

- Balnaves, A. S., Gelbrich, T., Hursthouse, M. B., Light, M. E., Palmer, M. J. & Percy, J. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2525–2535.
- Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fawcett, J., Griffith, G. A., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Org. Biomol. Chem. 3, 2701–2712.
- Fawcett, J., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Acta Cryst. E61, 03322–03323.
- Servis, K. L. & Noe, E. A. (1973). J. Am. Chem. Soc. 95, 171-174.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany. Sheldrick, G. M. (2000). *SHELXTL*. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- St Jacques, M., Brown, M. A. & Anet, F. A. L. (1966). *Tetrahedron Lett.* pp. 5947–5951.